Large solutions to elliptic equations involving fractional Laplacian

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semilinear fractional elliptic equations involving measures

We study the existence of weak solutions to (E) (−∆)u+g(u) = ν in a bounded regular domain Ω in R (N ≥ 2) which vanish in R \Ω, where (−∆) denotes the fractional Laplacian with α ∈ (0, 1), ν is a Radon measure and g is a nondecreasing function satisfying some extra hypotheses. When g satisfies a subcritical integrability condition, we prove the existence and uniqueness of a weak solution for pr...

متن کامل

Saddle-shaped Solutions of Bistable Elliptic Equations Involving the Half-laplacian

We establish existence and qualitative properties of saddle-shaped solutions of the elliptic fractional equation (−∆)u = f(u) in all the space R, where f is of bistable type. These solutions are odd with respect to the Simons cone and even with respect to each coordinate. More precisely, we prove the existence of a saddle-shaped solution in every even dimension 2m, as well as its monotonicity p...

متن کامل

EXISTENCE OF WEAK SOLUTIONS FOR QUASILINEAR ELLIPTIC EQUATIONS INVOLVING THE p-LAPLACIAN

This paper shows the existence of nontrivial weak solutions for the quasilinear elliptic equation − ` ∆pu +∆p(u ) ́ + V (x)|u|p−2u = h(u) in RN . Here V is a positive continuous potential bounded away from zero and h(u) is a nonlinear term of subcritical type. Using minimax methods, we show the existence of a nontrivial solution in C loc (R N ) and then show that it decays to zero at infinity wh...

متن کامل

Multiplicity of Solutions for Non-local Elliptic Equations Driven by Fractional Laplacian

A. We consider the semi-linear elliptic PDEs driven by the fractional Laplacian: { (−∆)su = f (x, u), in Ω, u = 0, in Rn\Ω. By the Mountain Pass Theorem and some other nonlinear analysis methods, the existence and multiplicity of non-trivial solutions for the above equation are established. The validity of the Palais-Smale condition without AmbrosettiRabinowitz condition for non-local el...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire

سال: 2015

ISSN: 0294-1449

DOI: 10.1016/j.anihpc.2014.08.001